Anticorrelated motions as a driving force in enzyme catalysis: the dehydrogenase reaction.

نویسندگان

  • Jia Luo
  • Thomas C Bruice
چکیده

Molecular dynamics and cross-correlation analysis of the horse liver alcohol dehydrogenase HLADH.NAD(+).PhCH(2)O(-) complex has established anticorrelated motions between the NAD(+)-binding domain and other portions of the enzyme. Four pairs of anticorrelated interactions are (i and ii) cofactor-binding domain: C(alpha) of V292 and the CG1 of V203 with C7 of PhCH(2)O(-); (iii) cofactor-binding domain: amide carbonyl oxygen of I318 with amide N of H67; and (iv) cofactor domain: C(alpha) of T178 with carbonyl oxygen of L141. The average distances between pairs are 9.2 A for i, 8.2 A for ii, 14.7 A for iii, and 18.2 A for iv. The motions of i and ii are most important in the approximately 0.5 A pushing of C4 of NAD(+) toward C7 of PhCH(2)O(-) to form push near-attack conformer (NACs). The motions of iv are less so, and those of iii are not important. Seventy-five quantum mechanics/molecular mechanics calculations of the energies of reaction were carried out without structural restrictions from different stages of the molecular dynamics trajectory. Of the 71 conformations, the 29 fulfilling NAC criteria were associated with the lowest energies of activation. Thus, anticorrelated motions from the NAD(+)-binding domain by way of the neighboring V292 and V203 have a pushing motion, which moves the C4 of NAD(+) toward the H-C7 of the substrate. Longer-range anticorrelated motions involving the cofactor-binding domain have no or very little influence on NAC formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing enzyme dynamics

Previous simulation studies have suggested that structural dynamics and protein motion play an important role in enzyme catalysis, but these results are difficult to verify experimentally. R. August Estabrook et al. have developed a predictive approach to guide the direct experimental testing of how enzyme dynamics impact catalysis. Their method highlights specific amino acid pairs likely to be...

متن کامل

Linking Protein Motion to Enzyme Catalysis

Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the ...

متن کامل

Linking coupled motions and entropic effects to the catalytic activity of 2-deoxyribose-5-phosphate aldolase (DERA)

DERA, 2-deoxyribose-5-phosphate aldolase, catalyzes the retro-aldol cleavage of 2-deoxy-ribose-5phosphate (dR5P) into glyceraldehyde-3-phosphate (G3P) and acetaldehyde in a branch of the pentose phosphate pathway. In addition to the physiological reaction, DERA also catalyzes the reverse addition reaction and, hence, is an interesting candidate for bio-catalysis of carbo-ligation reactions, whi...

متن کامل

The Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase

Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that fac...

متن کامل

Unraveling the role of protein dynamics in dihydrofolate reductase catalysis.

Protein dynamics have controversially been proposed to be at the heart of enzyme catalysis, but identification and analysis of dynamical effects in enzyme-catalyzed reactions have proved very challenging. Here, we tackle this question by comparing an enzyme with its heavy ((15)N, (13)C, (2)H substituted) counterpart, providing a subtle probe of dynamics. The crucial hydride transfer step of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 36  شماره 

صفحات  -

تاریخ انتشار 2004